A model state for filling $1/m$ composite-fermion Fermi-Liquid states in a partially-occupied Landau level with periodic boundary conditions

F. Duncan M. Haldane, Princeton University

- Remarks on emergent versus background quantum geometry
- A modular-invariant formalism on the torus
- A model state for the composite fermion

supported by DOE Basic Energy Sciences and W. M. Keck Foundation
• A different vision of quantum Hall geometry: **emergent**, not background:

• so far, formulated on the flat quantum plane

Classical geometry

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbf{x} = x^a \mathbf{e}_a$</td>
<td>Cartesian coordinates</td>
</tr>
<tr>
<td>$\mathbf{e}_a \cdot \mathbf{e}b = \delta{ab}$</td>
<td>Euclidean metric</td>
</tr>
<tr>
<td>$A = \frac{1}{2} \epsilon_{ab} dx^a \wedge dx^b$</td>
<td>Area 2-form</td>
</tr>
</tbody>
</table>

Quantum geometry

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[R^a, R^b] = -i \epsilon^{ab} \ell_B^2$</td>
<td>Heisenberg algebra</td>
</tr>
<tr>
<td>$\varphi(q, q') = \epsilon^{ab} q_a q'_b \ell_B^2$</td>
<td></td>
</tr>
<tr>
<td>$U(q_1)U(q_2) \ldots U(q_n) = \prod_{i<j} e^{\frac{1}{2} \varphi(q_i, q_j)} U(\sum_i q_i)$</td>
<td></td>
</tr>
</tbody>
</table>
quantum geometry

- quantum plane is not explicitly endowed with a Laplace-Beltrami operator (does not have intrinsic geometry in a metric sense, though does have a natural (flux) 2-form)

\[H = \sum_i V_1(R) + \sum_{i<j} V_2(R_i - R_j) \quad [R^a, R^b] = -i \epsilon^{ab} \ell_B^2 \]

\[V(R^x, R^y) \quad \text{smooth function on } \mathbb{R}^2 \]
\[\text{analytic function on } \mathbb{R}^2 \]
\[\text{entire function on } \mathbb{C}^2 \]

\[V_1(\mathbf{x}) = \int \frac{d^2 q \ell^2}{2\pi} \tilde{V}_c(q) f_n(q) e^{iq \cdot x} \]

- sufficiently rapidly-decreasing to make \(V \) entire
- Fourier transform of (unsmooth) potential
- extremely-rapidly-decreasing Landau orbit form-factor
• clean limit

\[H_0 = \sum_{i<j} V_2(R_i - R_j) \]

• substrate potentials as perturbation

\[H = H_0 + \sum_i V_1(R) \]

Look for properties of these clean models
This remarkable “projected Landau level” problem is unique in condensed matter physics:

- It has a short-distance regularization not due to an atomic-scale lattice, but due to the “quantum fuzziness” of its non-commutative geometry.

- This also means that it cannot be described using standard (commutative) quantum field theory.

\[
H_2 = \sum_{i<j} V_2(R_i - R_j) \quad [R^x_i, R^y_j] = -i\delta_{ij} \ell_B^2
\]

particles are identical
The entire “clean limit” problem

Depending on the filling factor ν and the form of the interaction potential $V_2(\mathbf{r})$, this problem is known to have the following types of ground states:

- incompressible (gapped) translationally-invariant inversion-symmetric topologically-ordered fractional quantum Hall (FQH) states
- compressible (gapless) states with **broken translational symmetry** (stripe and bubble phases, Wigner crystal)
- gapless “Composite Fermi Liquid” (CFL) states with **unbroken translational symmetry** which can be argued to exhibit a neutral fermion Fermi surface

The entire $H_2 = \sum_{i<j} V_2(\mathbf{R}_i - \mathbf{R}_j)$

$[R^x_i, R^y_j] = -i\delta_{ij}\ell^2_B$

exhibits a gapless anomalous Hall effect (AHE)

(like ferromagnetic metals)
In order to clarify what may and may or may not be a fundamental part of the explanation of FQH and CFL let us examine what is and is not present

\[H_2 = \sum_{i<j} V_2(R_i - R_j) \quad [R_i^x, R_j^y] = -i\delta_{ij} \ell_B^2 \]

• There is no Galilean invariance or Newtonian inertia (standard mass, kinetic energy) left in this model. All dynamics results from the quantum geometry (non-commutativity of R^x and R^y)

• This is not a "lowest Landau level" problem. Instead it is an “any Landau level” problem. All information that distinguishes different Landau levels is contained in the form-factor dependence of V_2

Galilean invariance (also rotational invariance) No

kinetic energy (Galilean or Dirac) No

special “lowest Landau level” physics No
• The key idea for understanding both the Fractional Quantum Hall and Composite Fermi Liquid states is “Flux attachment”

• Flux attachment has an essentially geometric component: it leads to an emergent dynamical metric that induces geometry

• The metric characterizes the shape of the elementary unit of the fluid.
• quantum solid

• unit cell is correlation hole

• defines geometry

measure distances in lattice units

• repulsion of other particles make an attractive potential well strong enough to bind particle

solid melts if well is not strong enough to contain zero-point motion (Helium liquids)
similar story in FQHE:

• “flux attachment” creates correlation hole
• defines an emergent geometry

potential well must be strong enough to bind electron

continuum model, but similar physics to Hubbard model

new physics: Hall viscosity, geometry

but no broken symmetry
A fundamental relation between momentum and electric dipole moment derives from electromagnetism:

\[\pi_a = \epsilon_{abc} D^b B^c \]

\[D^a = \epsilon_0 \delta^{ab} E_b + P^a \]

Momentum density

Polarization density

Generator of translations

\[\bar{p}_a \equiv \left(\frac{\hbar}{\ell_B^2} \right) \epsilon_{ab} R^b = B \epsilon_{ab} (e R^b) \]

2D antisymmetric symbol

\[[R^a, \bar{p}_b] = i \hbar \delta^a_b \]

(momentum)\textsubscript{a} = B \epsilon_{ab} (electric dipole moment)\textsubscript{b}
flux attachment creates a correlation hole that can bind one or more particles into a composite object

p particles + q “flux” (orbitals)

“flux attachment” Has a shape that defines a metric

displacement of charge relative to center of flux attachment gives an electric dipole

\[\vec{p}_a = B \epsilon_{ab} (e \delta R^b) \]

guiding center of each particle gets a natural origin, defined by the other particles!

correlation energy \(\rightarrow \) dispersion \(\varepsilon(P, g) \)

“kinetic energy” = electric polarization energy

\[(velocity^a) = \frac{\partial \varepsilon}{\partial \vec{p}_a} \]
• The key idea is that (at the correct particle density) the Berry phase from motion of the attached vortex cancels the Bohm-Aharonov phase from motion of the charge.

• This means the Lorentz force is canceled by the Magnus force, and the composite object moves in straight lines like a neutral particle.

Bosons
- can condense in the $p = 0$ (inversion-symmetric) state with no electric dipole

Fermions
- can form a Fermi sea in “momentum” (dipole) space
Berry curvature of the “Flux attachment” of a vortex-like correlation hole modifies the statistics

\[(-1)^{pq} \xi^p \]

\(-1\) for electrons

\[= \begin{cases} +1 & \text{composite object is boson} \\ -1 & \text{composite object is fermion} \end{cases} \]

e.g., one electron with \(p = 1, q = 2 \)

\(p \) particles + \(q \) “flux” (orbitals)

- inversion symmetry of FQHE: \(\gcd(p,q) = 1 \) or 2

- exchange phase
the electron excludes other particles from a region containing 3 flux quanta, creating a potential well in which it is bound.

1/3 Laughlin state (composite boson picture)

If the central orbital is filled, the next two are empty

The composite boson has inversion symmetry about its center

It has a “spin” (that couples to Gaussian curvature of its metric)

\[
\begin{array}{ccc}
\frac{1}{2} & \frac{3}{2} & \frac{5}{2} \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{ccc}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\end{array}
\]

\[
L = \frac{1}{2}
\]

\[
L = \frac{3}{2}
\]

\[
s = -1
\]
2/5 hierarchy/Jain state (composite boson picture)

\[
\begin{array}{ccc}
\frac{1}{2} & \frac{3}{2} & \frac{5}{2} \\
1 & 1 & 0 & 0 & 0 \\
\frac{2}{5} & \frac{2}{5} & \frac{2}{5} & \frac{2}{5} & \frac{2}{5}
\end{array}
\]

\[L = 2\]

\[L = 5\]

\[s = -3\]

\[L = \frac{g_{ab}}{2\ell_B^2} \sum_i R_i^a R_i^b\]

\[Q^{ab} = \int d^2r \, r^a r^b \delta(r) = s\ell_B^2 g^{ab}\]

second moment of neutral composite boson charge distribution
The original model

\[H_2 = \sum_{i<j} V_2(R_i - R_j) \]

\[[R_i^x, R_j^y] = -i \delta_{ij} \ell_B^2 \]

\[\tilde{V}_2(q) \rho(q) \rho(-q) \]

\[\rho(q) = \sum_{i=1}^{N} e^{i q \cdot R_i} \]

\[\nu = \frac{N}{N_F} \]

\[\tilde{V}_2(q) \rho(q) \rho(-q) \]

\[[\rho(q), \rho(q')] = 2i \sin(\frac{1}{2} q \times q' \ell_B^2) \rho(q + q') \]

The generic symmetry ingredients:

- 2D many-body translation and inversion
 \[R_i \leftrightarrow a \pm R_i \] (all \(i \))

- Permutation symmetry of the identical particles

- For (spinless) fermions, particle-hole symmetry
 (C) combined with time-reversal (T):

\[C: \rho(q) \leftrightarrow -\rho(-q) \]

\[T: i \leftrightarrow -i \]

\[C^2 = (-1)^{\frac{1}{2} N_F (N_F - 1)} \quad T^2 = 1 \]

Together these preserve the GMP algebra, leave \(H_2 \) unchanged

Total flux = \(N_F \nu = \frac{N}{N_F} \)

Fourier components of guiding-center density

\[\rho(q) = \sum_{i=1}^{N} e^{i q \cdot R_i} \]
\[[R_i^x, R_j^y] = -i\delta_{ij}\ell_B^2 \]

- The guiding center algebra is a Heisenberg algebra, with a fundamental representation

\[[a, a^\dagger] = 1 \]

- states in the one-particle Hilbert space have the holomorphic representation

\[|\Psi\rangle = f(a^\dagger)|0\rangle \quad a|0\rangle = 0 \]

A holomorphic function

- here

\[\frac{1}{2\ell_B^2} \tilde{g}_{ab}(R^a - x^a)(R^b - x^b) = \frac{1}{2} (a^\dagger a + aa^\dagger) \]

an arbitrary determinant -1 metric

an arbitrary origin
• The usual “lowest Landau level wavefunction” formalism has

\[\Psi(x) = f(z) e^{-\frac{1}{4} z^* z / \ell_B^2} \]

holomorphic function

• With a (quasi) periodic boundary condition, this becomes

\[\psi(z, z^*) \propto \left(\prod_{i=1}^{N\Phi} \tilde{\sigma}(z - w_i) \right) e^{-\frac{1}{4} z^* z / \ell_B^2} \sum_i w_i = 0 \]

modified Weierstrass sigma function*

\[N\Phi \text{ zeroes} \]

(slightly modified from Weierstrass’ original definition when the pbc lattice is not square or hexagonal)

(one for each flux quantum passing through the primitive region of the pbc)
Weierstrass sigma function

\[\sigma(u) = u \prod_{L \neq 0} \left(1 - \frac{u}{L}\right)e^{\frac{u}{L}} + \frac{1}{2} \frac{u^2}{L^2} \]

\[\{L\} = \{2m\omega_1 + 2n\omega_2\} \]

both sigma function are “modular invariant” (under changes of basis of the lattice)

• “quasi-modular invariant”

\[\sum_{L \neq 0} \frac{1}{L^2} \neq \sum_{m \neq 0} \frac{1}{(2m\omega_1)^2} + \sum_{n \neq 0} \left(\sum_{m} \frac{1}{(2m\omega_1 + 2n\omega_2)^2} \right) \]

depends on order in which sum is evaluated (choice of \(\omega_1 \))

\[G_2(\omega_1,\{L\}) = \tilde{G}_2(\{L\}) + \frac{1}{A} \frac{\omega_1^*}{\omega_1} \]

“almost holomorphic (in \(\tau = \frac{\omega_1}{\omega_2} \)) modular invariant”

vanishes for square/hexagonal lattices

modified sigma function

\[\tilde{\sigma}(u) = ue^{-\frac{1}{2} \tilde{G}_2 u^2} \prod_{L \neq 0} \left(1 - \frac{u}{L}\right)e^{\frac{u}{L}} + \frac{1}{2} \frac{u^2}{L^2} \]

cancels invariant part of

\[G_{2k} = \sum_{L \neq 0} \frac{1}{L^{2k}} \]

holomorphic modular invariants (\(2k > 2 \))

area of unit cell

\[A(\{L\}) = \frac{1}{2} i \pi (\omega_1^* \omega_2 - \omega_2^* \omega_1) \]
• uniform states on the torus must be modular invariant (up to topological degeneracy)

• mixed state with density matrix given by trace over topological multiplet must be fully modular invariant.

use of modified sigma function guarantees modular invariance
In the Heisenberg-algebra reinterpretation

$$|\Psi\rangle = \prod_{i=1}^{N_\Phi} \sigma(a_i^\dagger - w_i)|0\rangle \quad \sum_i w_i = 0$$

One particle

$$N = 1$$

The filled Landau level is

$$|\Psi\rangle = \left(\prod_{i<j} \sigma(a_i^\dagger - a_j^\dagger)\sigma(\sum_i a_i^\dagger)\right) |0\rangle$$

Filled Level

$$N = N_\Phi$$

The Laughlin states are

$$|\Psi\rangle = \left(\prod_{i<j} \sigma(a_i^\dagger - a_j^\dagger)^m\right) \prod_{k=1}^{m} \sigma(\sum_i a_i^\dagger - w_k)|0\rangle \quad \sum_{k=1}^{m} w_k = 0.$$

$$\nu = \frac{1}{m}$$

Laughlin state

$$N_\Phi = mN$$
Unlike the filled Landau level state, in which the only metric-dependence is the normalization, the Laughlin states depend on the metric choice which fixes the shape of the vortex-like correlation hole around each particle (“attached flux”).

\[|\Psi\rangle = \left(\prod_{i<j} \sigma(a_i^\dagger - a_j^\dagger)^m \right) \prod_{k=1}^{m} \sigma(\sum_i a_i^\dagger - w_k) |0\rangle \]

\[\nu = \frac{1}{m} \]

• correlation holes in two states with different metrics

(filled Landau level is a Slater-determinant state with no correlation hole)
• Particle-Hole symmetry (on torus).

The many-fermion states with \tilde{N} holes are described by

\[
\Psi(\{z_i\}) = \Phi_{\tilde{N}+1}(\{z_i\}) \prod_{i<j} \tilde{\sigma}(z_i - z_j | L)
\]

Then applying this to the empty state, just the one-particle state that is the particle-hole conjugate state of the Slater determinant given by

\[
\Phi_{1}(\{z_i\}) = \tilde{\sigma}(\sum_i z_i).
\]

The state of N spinless fermions and \tilde{N} fixed holes $\{\bar{z}_j, j = 1, \tilde{N}\}$ is a Slater determinant given by

\[
\Psi(\{z_i\}, \{\bar{z}_j\}) = \Phi_{\tilde{N}+1}(\{z_i\}; \{\bar{z}_j\}) \prod_{i<j} \tilde{\sigma}(z_i - z_j),
\]

\[
\Phi_{\tilde{N}+1}(\{z_i\}; \{\bar{z}_j\}) = \left(\prod_{j=1}^{\tilde{N}} \tilde{\sigma}(z_i - \bar{z}_j) \right) \tilde{\sigma}(\sum_i z_i + \sum_j \bar{z}_j)
\]
the particle-hole transform

The many-fermion states with \tilde{N} holes are described by

$$\Psi(\{z_i\}) = \Phi_{N+1}(\{z_i\}) \prod_{i<j} \tilde{\sigma}(z_i - z_j)$$

The \tilde{N}-particle state that is the particle-hole conjugate state of the N-particle state (20) is

$$\tilde{\Psi}(\{z_i\}) = (-1)^{\frac{1}{2} N(N-1)} \tilde{\Phi}_{N+1}(\{z_i\}) \prod_{i<j} \tilde{\sigma}(z_i - z_j)$$

(24)

where

$$\tilde{\phi}_{N+1}(\{z_i\}) = \prod_{i=1}^{N} \int dA_i e^{-\frac{1}{2} \bar{z}_i z_i} \Phi_{N+1}(\bar{z}_j) \Phi_{N+1}(\{z_i\}, \{\bar{z}\}).$$

(25)

can be turned into a finite sum.
Case where composite particle is a fermion

- Anomalous Hall Effect (AHE) in 2D metals

\[\sigma^H = \frac{e^2}{2\pi \hbar} \sum_n \nu_n \]

\[\nu_n = \frac{1}{2\pi} \int \mathcal{A}_{n}^{a}(k_F) dk_{Fa} = \frac{\phi_F}{2\pi}. \text{ modulo an integer} \]

\[e^{i\phi_F} \]

Berry phase factor for moving a quasiparticle around the Fermi surface

In principle, derived to all orders in diagrammatic perturbation theory
• The following arguments suggests that the same result can be obtained for composite fermions, without any perturbative path from free electrons.

• This is evidence in favor of the conjecture that the result is quite general, and fully non-perturbative.

• However, it may miss some details involving the topological degeneracy, as it disagrees with arguments of Son and others, and may need some changes.
The real-space orbit of the dipolar electron displacement around the flux-attachment center of a fixed correlation hole (held in place by the other electrons) exactly tracks the shape of the Fermi surface:

\[
(k\text{-space area of Fermi surface}) \times \ell_B^2 = (\text{area of real-space orbit}) / \ell_B^2
\]
given by Luttinger theorem.

Berry phase:

\[
e^{i\phi} = e^{2\pi i v}
\]

Berry phase = Bohm-Aharonov phase for e to move around real space path around origin fixed at the center of the correlation hole.

in agreement with

\[
\sigma_H = \frac{e^2}{\hbar} \frac{\phi}{2\pi}
\]

FDMH 2005

composite fermion

Fermi surface
• for half-filled Landau level, this gives a Berry phase of π

• But this comes from a universal uniform Berry curvature (and not from a Dirac cone with a “\mathbb{Z}_2” singularity at “$k = 0$” (Son)).

• “$k = 0$” is the state of the cf with inversion symmetry and no electric dipole moment. Its energy is quadratic in the dipole moment (and thus in the momentum).

microscopic picture

- quadratic dispersion
- uniform k-space Berry curvature inside and outside the Fermi surface

Son’s “Dirac” picture

- linear dispersion
- \mathbb{Z}_2 point singularity at “$k = 0$”
- No k-space Berry curvature
Model for $1/m$ CFL states

- choose distinct “occupied orbitals” (allowed dipole moments, quantized by the pbc)

$$\{d_i, i = 1, \ldots N\} \in \{\frac{L}{N}\}$$

which minimize

$$\frac{1}{N} \sum_{i<j} |d_i - d_j|^2 = \frac{1}{2} \sum_i |d_i - \bar{d}|^2$$

for fixed

$$\bar{d} = \frac{1}{N} \sum_i d_i$$

- $\bar{d} \mod \{\frac{L}{N}\}$ is a many-body quantum number that takes N^2 distinct values. There is thus one such configuration per sector of this many-body translational quantum number.
The model 1/m CFL states (including the boson case $m = 1$) are

$$
\Psi(\{z_i, z_i^*\}, \{d_i\}, \{w_\alpha\}) \propto \left(\det M_{i,j}(\{z_k\}, d_j, d_j^*, \bar{d}) \right) \times \left(\prod_{i<j} \sigma(z_i - z_j) \right)^{m-2} \prod_{\alpha=1}^m \sigma((\sum_i z_i) - w_\alpha) \prod_{i=1}^N e^{-\frac{1}{4} \frac{z_i^* z_i}{\ell_B^2}}
$$

The matrix in the determinant is

$$M_{i,j}(\{z_k\}, d_j, d_j^*, \bar{d}) = e^{\frac{1}{m} \frac{d_j^* z_i}{2\ell_B^2}} \prod_{k \neq i} \sigma(z_i - z_k - d_j + \bar{d})$$

also:

$$\sum_{\alpha=1}^m w_\alpha = \sum_{j=1}^N d_j = N\bar{d}$$

mean value of d_j

(a continuously adjustable parameter)

complex cf dipoles $e d_j$

(d_j is quantized in units $\frac{L}{N}$)
• Now we see that the “Fermi sea” is invariant under uniform translation in “dipole space”

Z_{COM} overlap with PH-conjugate in opposite charge sector 1-
overlap
0 0.999998870263 1.1297367517e-06
1 0.999999369175 6.3082507884e-07
2 0.99999860296 1.39704033186e-06
3 0.99999860296 1.3970403312e-06
4 0.999999369175 6.30825078063e-07
5 0.999998870263 1.12973675237e-06
6 0.999999369175 6.30825079173e-07
7 0.99999860296 1.39704032942e-06
8 0.99999860296 1.39704032909e-06
9 0.999999369175 6.30825078507e-07

Computing ph symmetry
(with Scott Geraedts)
model state is numerically very close to p-h symmetry

cluster of adjacent occupied states
Q: is there a clear test to distinguish the two pictures?

A: **Yes**! Compute the Berry phase for evolution of a cf quasiparticle around a **contractible** loop that stays close to the Fermi surface, but encloses a finite k-space area.

- **Prediction of argument given here**: Berry phase proportional to k-space area enclosed by path.

- Son’s prediction: no Berry phase \((\text{at } \nu = \frac{1}{2})\)
Q: Can one not just define “Dirac” to mean “having a Berry phase of π for going around the closed (2D) Fermi surface arc?”

A: No! “Dirac” has a specific meaning: a conical band-touching point which in 2D only occurs by “\mathbb{Z}_2” topological protection (requires states in the orthogonal ensemble with inversion and time-reversal symmetry) and has no Berry curvature. Without this feature, the system cannot be called Dirac*.

*to argue that anyone is free to redefine “Dirac” as they wish is an invitation to indulge in a kind of “product-labeling violation”: in other areas (watches, handbags,..) this can have severe legal consequences!
This is the **entire** problem: nothing other than this matters!

- H has translation and inversion symmetry

\[
[(R_1^x + R_2^x), (R_1^y - R_2^y)] = 0
\]

\[
[H, \sum_i R_i] = 0
\]

- generator of translations and electric dipole moment!

\[
[(R_1^x - R_2^x), (R_1^y - R_2^y)] = -2i\ell_B^2
\]

- relative coordinate of a pair of particles behaves like a single particle

\[
H = \sum_{i<j} U(R_i - R_j)
\]

\[
[R^x, R^y] = -i\ell_B^2
\]

like phase-space, has Heisenberg uncertainty principle

want to avoid this state

two-particle energy levels

gap
• Solvable model! ("short-range pseudopotential")

\[
U(r_{12}) = \left(A + B \left(\frac{(r_{12})^2}{\ell_B^2} \right) \right) e^{-\frac{(r_{12})^2}{2\ell_B^2}}
\]

• Laughlin state

\[
|\Psi^m_L\rangle = \prod_{i<j} (a_i^{\dagger} - a_j^{\dagger})^m |0\rangle
\]

\[
a_i |0\rangle = 0 \quad a_i^{\dagger} = \frac{R^x + iR^y}{\sqrt{2\ell_B}}
\]

\[
E_L = 0 \quad [a_i, a_j^{\dagger}] = \delta_{ij}
\]

maximum density null state

• \(m=2\): (bosons): all pairs avoid the symmetric state \(E_2 = \frac{1}{2}(A+B)\)

• \(m=3\): (fermions): all pairs avoid the antisymmetric state \(E_2 = \frac{1}{2}B\)