May 28

Construction of Kuranishi structures

\[X = \mathbb{K} \times \mathbb{U} \times (-\infty, 0) \times N_\mathbb{U} \cup \mathbb{C} \times N_\mathbb{U} \]

\(\mathbb{K} \) : moduli of Koba orbit of \(\mathbb{N}_\mathbb{U} \)

assume \(\text{BM} \)

\[\hat{M}_{\text{g}, \text{e}, \text{h}, \text{e}}(X; E) \Rightarrow [E, E', E', \mathbb{U}, \mathbb{U}'] \]

\[\mathbb{U} : \mathbb{E} \leftarrow \mathbb{U} \rightarrow \{ X \} \]

REH \(X \) comp. (modify strata replacing topological space fiber product by old fiber product)
Thm (Ishikawa)

\[\hat{M}_{g,\ell_1,\ell_2} (X; E) \text{ has a k. str. with corners} \]

Explained in May 21

\[\hat{M}_{g,\ell_1,\ell_2} (X; E) \supset \hat{M}_{g,\ell_1,\ell_2} (X; E) \]

\[\text{ambient set} \]

\[\left(\hat{z}, \hat{w}, \hat{z}', \hat{w}', \hat{z}'' \right) \]

Do not assume \(\psi \) to be holomorphic
Obstruction bundle data \rightarrow Kuranishi structure

\[P = \mathcal{M}_{g, \overline{e}, \overline{f}, \overline{E}}(X, E) \]

\[\mathcal{X} \subset \mathcal{B}(P) \text{ codim } \nu \]

\[\hat{F}_{g, \overline{e}, \overline{f}, \overline{E}}(X, E) \]

\[\nu_{\mathcal{X}} \leq C^0(\overline{\mathcal{X}}, \mathcal{U}^{\mathcal{X}} \times \mathcal{U}^{\overline{\mathcal{X}}}) \]

or

\[\mathcal{U}^{\mathcal{X}} \mathcal{T}(\mathbb{R} \times \mathcal{N}) \]

1. Repeat somewhere on H
2. Some aff. moves on P
3. Let $D_{\nu_{\mathcal{X}}} + E_{\nu_{\mathcal{X}}}(H) = C^0(\overline{\mathcal{X}}, \mathcal{U}^{\mathcal{X}} \times \mathcal{U}^{\overline{\mathcal{X}}}) \cap \mathcal{G}$
4) Invariant of $\Lambda\mathcal{A}(\pi)$.

Actually, we need more than just existence of Kuranishi structure.

1) Compatibility with boundary & current.

\mathcal{O}, $g \geq 0$, $l=0$, $l_t=1$

\mathcal{H}^\sharp
\[e^{\frac{a}{b}} \quad (x, y) \rightarrow \left\{ \begin{array}{c}
\mathbb{R}^N \\ \text{if} \quad x \\
(\mathbb{R}^N + I) \quad \text{if} \quad y
\end{array} \right. \]
The Kuranishi structure of $M_{0,1}(X,E)$ restricts to the fiber product Kuranishi structure

$$\pi_t: M_{0,1}(X,E) \rightarrow R_0$$

is assumed to be weakly surjective

Def. \((X, \Delta) \xrightarrow{f} R\) is weakly sub.

\[f \circ (\Delta_b) \xrightarrow{f_b} U_b \rightarrow R \text{ is a submersion.} \]
Lemma

\((X, \mathcal{U}) \to \mathbb{R} \quad \hat{f} \quad \mathcal{V} \)

\(f\) is weakly submersive, \(\mathcal{V}\) is smooth.

\(\quad \square \quad \text{fiber product} \quad (X, \mathcal{U}) \times_{\mathbb{R}} (\mathcal{V}, \mathcal{W}) \)

\(\quad \square \quad (u, \mathcal{Z}) \in X \times \mathbb{R} \)

\((U_p, \mathcal{L}) \quad \text{chart of } \mathcal{U} \text{ at } P \)

\((V_q, \mathcal{L}) \quad \text{chart of } \mathcal{V} \text{ at } Q \).
The $U_1 \times K$ would give

a k-chart.

Then added:

The Kuranishi structure of $\hat{M}_{g,2-2g+2}(X, \mathcal{F})$ can be chosen so that its restriction of the stack coincides with fiber product k^* structure over $(R_g)^*$.
Why we need it?

States: We want to integrate differential form ω and apply

$$\int_{\partial C} S \, \omega = S \cdot \int_{\partial C} \omega$$

Integration depends on C.

perturbation. States holds if ∂C perturbations are compatible at A.

\[q \]
The \((X, \mathcal{U})\) space with \(X\), sth \((\partial X, \partial \mathcal{U})\) has \(C^1\)-perturbations which are compatible at the corners.

\[\Rightarrow \text{We can extend it to a } C^1\text{-perturbations of } (X, \mathcal{U}). \]
Proof is not so easy.

Thus, we construct system of Kuranishi structures which are compatible at the boundary and corners.

If obstruction bundle data have such property

\Rightarrow associated Kuranishi structure has this property.
I will go back to this point later.

Another point which is very important in SFT.

Not we have another compactification

\[\tilde{M}_{\beta_1 \beta_2 \beta_3} (X, E) \]

\[\Rightarrow \tilde{M}^{\rm pl}_{\beta_1, \beta_2, \beta_3} (X, E) \]
Codimension on states of Pandey-Isidrovers
compactification $\mathcal{M}^{P2}_{g,0,\ell,\pi_2}(X,E)$ is smaller
than that of $\mathcal{M}^{BEHV2}_{g,0,\ell_2}(X,E)$.

Algebraic structure of SFT should be related
to $\mathcal{M}^{P2}_{g,0}\cong \mathcal{M}^{BEHV2}$.
Note that a stable finite IRd action on \(\hat{M} \) is obtained by shrinking the closures of their orbits to a point.

Existence

\(\exists x \quad \hat{M} \)
\[R \rightarrow \mathcal{A} \]

1 1 \[f = 1 \]

Closure of calat's containes

1 1 \[f = 0 \]

\[0 - 1 \]

\[0 - 0 \]
Strata-wise \mathbb{R}^1 action extends to the ambient set $\tilde{\mathcal{V}}_{\mathbb{R}^1}(X, \bar{\sigma})$.

Def: Obstruction bundle data is invariant of strata-wise \mathbb{R}^1 action

\[\exists \mathbb{P} \in \mathcal{P} \times \mathbb{R} \quad \mathcal{O}(\mathbb{P}, \mathbb{P}) \in \mathbb{R} \]

\[\mathcal{O}_1 \quad x \in \mathbb{R} \cdot \mathbb{P} \]

\[\mathcal{O}_2 \quad \mathbb{P} \mapsto \mathbb{P} \cdot \mathbb{P} \cdot \mathbb{P} \cdot (X) \]

The isomorphism extends to the closure
If the bundle data is H^2 act in

\[\Rightarrow \text{If } \Phi \text{ on } M \Rightarrow \text{Hermes becomes } H^2 \text{ in. } \]

\[\Rightarrow \text{We can choose CF perturbation to be } H^2 \text{ in.} \]

We can use it to prove that when applying Stokes, I component which has nontrivial H^2 action does not contribute.
How to construct obstruction bundle data? Which is the invariant?

Two extra properties we need for $E_p(x)$:

1. Compatibility with fiber product description at boundary and corners
2. Invariance with strata-wise L^2 action
\(\Theta \) will be a consequence of "component-wise-ness", which I will next describe.

\[
\mathcal{F} = \left\{ (x^1, x^2, \ldots, x^n) \mid x \in \mathbb{R} \right\} \subset \bigwedge (\mathbf{X}, \mathbf{E})
\]

\[
\mathcal{F} = \left\{ [\mathcal{Z}, \mathcal{W}, \mathcal{V}, \mathcal{U}, \mathcal{L}] \mid M_{1,1} \mathcal{F} (x, \mathbf{E}) \right\}
\]

\[
\mathbf{X} = \mathcal{R}_\mathbf{e}(\mathcal{F})
\]
I will define the motion of components. Let

\[E_p (H) \]

Let \(Z' = \bigcup \mathbb{Z}_a \) decomposition to irreducible component

Then \(Z = \bigcup \mathbb{Z}_a \)

\(Z_a \) may not be irreducible.
\[K = \prod_{a \in A} x_a \]
\[\tau_a = (z_a, \omega, \mu, \lambda, \eta) \]
\[\eta = \prod_{a \in A} \eta_a \]
\[\eta_a = (z_a, \omega_a, \mu_a, \lambda, \gamma) \]

Def: Obstruction bundle data is composed wise

\[\Rightarrow E_{\mathcal{M}}(H) = \bigoplus_{a \in A} E_{\mathcal{M}}(x_a) \]
$E_{\mu_i}(\mathcal{X}_i) \subseteq C^0(\bar{\Omega}^i; \mathbb{R}^{m\times n} \otimes \Lambda_{\mu_i})$
The important condition is

$$E_p(t) = E_{p_1}(x_1) \Theta E_{p_2}(x_2) \Theta E_{p_3}(x_3)$$

Namely, the part of $E_p(t)$ whose support is on Z_1 depends only on x_1, p_1, and is independent of x_2, p_2, x_3, p_3.

Componentwise \Rightarrow Compatibility with fiber product

U_1' $\quad \xi = 1$

U_2 $\quad \xi = 0$

$U_2:1$ $\quad \xi = 1$

U_1 $\quad \xi = 0$
\((U_1, U_2) \subset \text{Kuramashi nbd of } p \)

\(\Rightarrow \quad \exists U_1' + \delta U_2 \subset E_p(U) \)

\(\Rightarrow \quad \exists U_1' \subset E_{p_1}(U_1') \)

\(\exists U_2' \subset E_{p_2}(U_2') \)

\(\Rightarrow \quad U_1' \subset \text{Kuramashi nbd of } p_1 \)

\(U_2' \subset \text{Kuramashi nbd of } p_2 \)
Thus the issue is to find a
(confirmation)
abstraction between data
who is unafigured wise

Then

\[\text{Eq. 1} \]
Let us discuss it.

Reference:
A. Prem: arXiv 1809.03409
Fuku: arXive 1808.06106

(I think Ishicawa's proof is basically similar.)

Let me first explain one point which I did not explain in the definition of obstruction bundle data.
$F_p(x) \text{ is smooth wrt } x$

What it mean

Example

\(\text{H} = (\overline{z_2}, \overline{z_1}, \overline{w}) \)

\[u_2 \xrightarrow{\mathcal{F}} \overline{z_2} \quad \overline{z_1} \quad \overline{t} = 1 \]

\[u, \overline{z_2}, \overline{z_1} \quad \overline{t} = 0 \]

First assume \((\overline{z_2}, \overline{z_1}, \overline{w})\), \((\overline{z_3}, \overline{z_2}, \overline{w})\) is stable
H = (z', z' \cup z, z')

(z', z' \cup z) \sim (z, z' \cup z) \text{ in DM space.}

\exists \text{ differ} \quad \overline{z}'(\text{thick}) \Delta \overline{z}_1(\text{thick}) \cup \overline{z}_2(\text{thick})
\[U' \mid \Sigma(t_{\text{thick}}) \text{ may regard as a map} \]

\[\Sigma_t(t_{\text{thick}}) \xrightarrow{u'_1} X \cap R > N \]

\[\Sigma_t(t_{\text{thick}}) \xrightarrow{} X \cap R > N \]

\[E_n(p) \subseteq C^{00}(\Sigma_t(t_{\text{thick}}), U'_1, X) \]

\[\Theta \subseteq C^{00}(\Sigma_t(t_{\text{thick}}), U'_1, \cap R > N) \]
We require

1. \(F_{\mu}(b) \) depends only on \(\mathbb{H}'(\text{thick}) \)
 and its elements are supported on \(\mathbb{H}'(\text{thick}) \).

2. \[\forall \mathbb{H}'(\text{thick}) \rightarrow E_{\mu}(\mathbb{H}) \text{ is smooth.} \]
$\exists \ e_1, \ -\ , \ e_r$

$e_i(w) \in \text{ a map}$

$\mathbb{L}^2 (\mathbb{R}^+(\text{thick}) \times \mathbb{X}) \xrightarrow{\mathcal{A}} \mathbb{L}^2 (\mathbb{R}^+(\text{thick}) \times \mathbb{Y} \times \mathbb{V})$

$s_2 \ \forall \ \mu \in \mathbb{M} \Rightarrow \ A \in C^m$

$\exists \ e_i(w), \ -\ , \ e_k(w) \text{ is a basis of } E_H(\mathbb{R})$
When \((\bar{z}, \bar{z}_W \bar{w})\) is not stable.

\[H^a (\bar{z}_a, \bar{z}_a W w_a) \text{ is not stable,} \]

\[\text{if } \forall a : \bar{z}_a \rightarrow X \quad \int u^* w > 0 \]

\[\text{or} \quad \forall a : \bar{z}_a \rightarrow N \times N \quad \int u^* (\Delta) > 0 \]
Take $\mathbb{Z}_a < \mathbb{Z}_a$ to

1. $(\mathbb{Z}_a, \mathbb{Z}_a, u \mathbb{Z}_a, Z_a)$ stable
2. \mathbb{Z}_a is an immersion at $p_5 \in \mathbb{Z}_a$
3. $\mathbb{Z}_a : \mathbb{Z}_a \to N$ is an immersion at $p_5 \in \mathbb{Z}_a$

Each \mathbb{Z}_a: take $W_{ai} C X \in N$
$(w', w', z', w, z) \in B_\varepsilon (y)$

take $z_{a,i}^+$ s.t. $h'(z_{a,i}^+) \in W_{a,i}$

and $(w', w', z', w, z') \in (z, \bar{w}, z, \bar{w}, z')$
in DM modular.

We then reduce the situation to the stiff case.

Smoothness of $E_p(x)$ with x is real.

To show $\mathcal{D}_{\mathcal{X}}(C-E_p(x))$ is an orbifold (gluing analysis. See FOO00 arXiv: 1603.02020)
Last step

How to construct obstruction bundle
data which is component wise

Recall

Baby example

Hilbert bundle
over a Hilbert
manifold
+ Fredholm section
2 = \delta'(0) \text{ compact}

\forall \varepsilon > 0 \text{ there } E_\varepsilon \subset E_\varepsilon' \text{ finite dimension}

\text{st } E_\varepsilon \cap \lim D_\varepsilon = \varepsilon.

\text{Take still } U_\varepsilon \text{ and ext } E_\varepsilon \text{ st }

\exists G \subset U_\varepsilon \Rightarrow E_\varepsilon(G) \cap \lim D_\varepsilon = \varepsilon.

\forall \varepsilon : \varepsilon H \subset C U_\varepsilon \text{ compact mult}
\[\text{Core } \mathcal{Z} = \bigcup_{1 \in \mathcal{Z}} \text{Int } K_{1} \]

\[p \in \mathcal{Z} \quad \text{L.H.S of } \mathcal{Y} \]

\[F_{p}(t) = \bigcup_{\gamma \in \mathcal{K}_{p}} E_{p}(\gamma) \]

"Imitate it. But work a bit harder to keep component-wise mean"
\(M(X, \mathcal{E}) \)

smallest \(T \)

\[\exists m(x, E) = \emptyset \]

\[p = (z_T, u_0) \cap M(X, \mathcal{E}) \]

\(T \)

\[T_0 \subset C^0(\Sigma_T, u^{x+T_X, \Theta}) \]

\[\lim B_{H^1} + E_0^0 = C^0(\cdot) \]

Choose \(E_0^0 \subset C^0(\Sigma_T, u^{x+T_X, \Theta \mathcal{V}^o}) \)
Let \(X = (Z', u') \) be a chart of \(\mathbb{R}^n \) such that \(u' \) is an embedding.
$\mathcal{E}_0 \subseteq C^0(\Omega, \mathbb{R}^n \times \mathbb{R}^{n'})$

$\mathcal{E}_0(x) \subseteq C^0(\Omega, \mathbb{R}^n \times \mathbb{R}^{n'})$

$t_{\mathcal{E}} \times \mathbb{R} \subseteq T_{x_{\mathcal{E}}} \times \mathbb{R}$

$D_{\mathcal{E}_0} \subset \mathcal{E}_0(x) = C^0(\mathbb{R}^d \times \mathbb{R}^n \times \mathbb{R}^{n'})$

$\cup (C_0^2 \times \mathbb{R}) \subset \mathbb{R}_0^+ \times \mathbb{R}$
The next is the same as the last case.

Inductive step

\[p_n \]

\[p \]
\[\hat{\mathbf{p}} = \hat{\mathbf{p}}_1 + \hat{\mathbf{p}}_2 \quad \hat{\mathbf{p}}_i \in M(E_i) \]

\[M(E_i) \subseteq \text{null of } \mathbf{p}_{i,i}, \quad i = 1, \ldots, J_i \]

\[\mathbf{f}_i \sim \mathbf{p}_{i,i} \quad \mathbf{E}(\mathbf{p}_{i,i}) \text{ is given} \]

\[\mathbf{f}: \Omega_{\mathbf{p}_{i,i}} \rightarrow \mathbb{R} \]
We can define \(E_p(n) \).

In this way we define \(E_p(n) \) if \(n \) is close to \(2N \).

Then extend to \(\hat{M} \).