Stringy Excited Baryons in Holographic QCD

Shigeki Sugimoto (YITP, Kyoto Univ.)

Based on [arXiv: 2001.01461]
Yasuhiro Hayashi, Takahiro Ogino and Tadakatsu Sakai

“Applications of gauge topology, holography and string models to QCD”
Simons Center Summer Seminar Series, August 6, 2020
In holographic models of QCD, mesons are described by a 5 dim $U(N_f)$ gauge theory.

Baryons are often treated as solitons in the 5 dim gauge theory.

$$\#\text{baryon} = \frac{1}{8\pi^2} \int_{\Sigma_t} \text{tr} (F \wedge F)$$

→ a lot of nice results

But, this is not enough!
Pion, vector and axial vector mesons are obtained from the 5 dim gauge field:

\[A_\mu(x^\mu, z) = \sum_{\mu = 0}^3 B^{(n)}_\mu(x^\mu) \psi_n(z) \]

\[A_z(x^\mu, z) = \sum_{n \geq 1} \varphi^{(n)}(x^\mu) \phi_n(z) \]

\[\varphi^{(0)} : \text{pion}, \quad B^{(1)}_\mu : \rho \text{ meson}, \quad B^{(2)}_\mu : a_1 \text{ meson}, \quad \cdots \]

\[J^{PC} = 0^{--} \quad J^{PC} = 1^{--} \quad J^{PC} = 1^{++} \]

But, there are many other mesons found in the experiments.
$I = 1$ Mesons from PDG

blue: established
gray: not established

$J^P_C = 1^{++}, 1^{--}$

mass [GeV]

Spin, parity, charge conj.
Can we get these mesons?

We should be able to get these mesons, if the holographic QCD is really equivalent to QCD.

In fact, the top-down holographic QCD based on D4/D8 system predicts the existence of these mesons! [Imoto-Sakai-S.S. 2010]

1st excited states

\rightarrow \ a_2(1320), \ b_1(1235), \ \pi(1300), \ a_0(1450), \ \cdots

2nd excited states

\rightarrow \ \rho_3(1690), \ \pi_2(1670), \ \cdots

3rd excited states

\rightarrow \ a_4(2040), \ \cdots
$I = 1$ Mesons from PDG

Furthermore,

This behavior (linear Regge trajectory) is reproduced from string theory.

\(J = \alpha_0 + \alpha' m^2 \)

\(\alpha_0 \approx 0.53 \quad \alpha' \approx 0.88 \text{ GeV}^{-2} \)

\(\rightarrow \) Clear experimental evidence of string theory!
Today,

I’d like to develop a similar story for the baryon sector.
Baryons are often treated as solitons in the 5 dim gauge theory.

$$\#\text{baryon} = \frac{1}{8\pi^2} \int \sum_t \text{tr} (F \wedge F')$$

Quantizing the light fluctuations around the soliton, a lot of baryons with \(I = J = 1/2, 3/2, \ldots \) are obtained.

For example,

\[
\begin{align*}
I = J = 1/2 : & \quad \text{n,p, N(1440), N(1535), \ldots} \\
I = J = 3/2 : & \quad \Delta(1232), \Delta(1600), \Delta(1700), \ldots
\end{align*}
\]

But, there are many baryons with \(I \neq J \).
$I = 1/2$ Baryons from PDG

blue: established
gray: not established

mass [GeV] $I=J=1/2$
$I = 3/2$ Baryons from PDG

- **blue**: established
- **gray**: not established

Spin parity

$\Delta I = 0$
Clearly, the previous analysis was not enough.

Question:

Can we get all these baryons from string theory?
Our proposal is to consider stringy excited states.

Baryon \sim \begin{array}{c}
\text{D-brane} \\
\text{open string}
\end{array}

\begin{array}{c}
\text{excited} \\
\text{open string}
\end{array}

(See also Cobi’s talk on June 4th)
NB:

- As you will see, there are some ambiguities both in the analysis and the interpretation.
 - I am afraid I will not be able to provide you the complete answer to the previous question. But, let me try to propose a way to answer it.

- We neglect 1/Nc and 1/λ corrections.

- Today, we only consider the Nf = 2 cases (only consider up and down quarks), and neglect the quark mass.
Plan

1. Introduction ✔
2. Holographic QCD and Baryons
3. Stringy Excited Baryons
4. Interpretation
5. Summary and outlook
(Top-down) holographic QCD

Gauge/String duality predicts the following equivalence:

4 dim SU(Nc) QCD
with Nf massless quarks
+ massive adjoint matters
(realized in a D-brane system)

Type IIA string theory
in a 10 dim curved background
with Nf probe D8-branes
“holographic QCD”

Background $\sim R^{1,3} \times R^2 \times S^4$
with RR flux
$x^\mu (y, z)$
$
\frac{1}{2\pi} \int_{S^4} dC_3 = N_c$

D8-branes $\sim R^{1,3} \times \{ z \} \times S^4$

R^2:

D8
Baryons are described as D4-branes wrapped on S^4. Nc open strings have to be attached, due to the RR flux.

[Witten, Gross-Ooguri 1998]

The other end point is attached on the D8-brane

$$\text{D8-branes } \sim \mathbb{R}^{1,3} \times \{z\} \times S^4$$
$$\text{D4-brane } \sim \mathbb{R} \times S^4$$

localized in the 4 dim space $\{(x^1, x^2, x^3, z)\}$

→ behaves as a particle and interpreted as a baryon
Hashimoto-lizuka-Yi “Matrix model for baryons” [Hashimoto-lizuka-Yi 2010]
(See Koji’s talk on July 30th)

Degrees of freedom living on the D4-brane:
- ground state, SO(5) invariance

D4-D4 open string \rightarrow $A_0(t)$, $X^M(t)$ ($M = 1, 2, 3, z$)
- real scalar field (position of D4)
- U(1) gauge field (auxiliary)
- flavor index

D8-D4 open string \rightarrow $w^I_\alpha(t)$ ($\alpha = 1, 2$, $I = 1 \sim N_f$)
- complex scalar field
- Weyl spinor of SO(4) acting on x^M

Lagrangian

$$L_0 = \frac{M_0}{2} \left[\dot{X}^2 + |D_0 w|^2 - V_{\text{ADHM}}(w) - V_0(X, w) \right] + N_c A_0$$

$$D_0 w = \dot{w} - i A_0 w$$

$$V_{\text{ADHM}}(w) = c \left(\text{tr}(\bar{w} w^\dagger) \right)^2$$

$$V_0(w, X) = \frac{2}{3} (X^z)^2 + \frac{1}{6} |w|^2$$

$$M_0 = \frac{\lambda N_c}{27 \pi}, \quad c = \frac{\lambda^2}{36 \pi^2}$$
• **Comments**

• Baryon states are obtained by quantizing this system.

• If one restricts w to be at the bottom of $V_{ADHM}(w)$,
 $\{X^M, w^I_\alpha\}$ parametrize the instanton moduli space.
 (ADHM construction) → agrees with the soliton approach.

• Then, the baryons with $I=J$ obtained in the soliton approach are reproduced.

• Recently, Hashimoto-Matsuo-Morita studied this system (including $N_f>2$ and multi-baryon cases) in detail regarding $V_{ADHM}(w)$ as a perturbation, and found baryons with $I\neq J$ in the spectrum. (→ Koji’s talk on July 30th)
Our main idea is to keep the massive modes:

- D4-D4 open string $\rightarrow A_0(t), \quad X^M(t), \quad \Phi_k(t) \quad (k = 1, 2, \cdots)$
- D8-D4 open string $\rightarrow w^I_\alpha(t), \quad \Psi_j(t) \quad (j = 1, 2, \cdots)$

Quantizing these open strings, we obtain

\[
\begin{array}{c|c|c|c}
N_{44} & \text{spin} & \text{parity} \\
\hline
1 & 2 \oplus 1 \oplus (0 \times 3) & + \\
& 1 \oplus 0 & - \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
N_{84} & \text{spin} & \text{parity} \\
\hline
\frac{1}{2} & \frac{3}{2} \oplus \frac{1}{2} & - \\
1 & \frac{5}{2} \oplus \left(\frac{3}{2} \times 2\right) \oplus \left(\frac{1}{2} \times 3\right) & + \\
\end{array}
\]
Lagrangian

\[L = L_0 + L_m \]

\[L_m = \frac{M_0}{2} \left[\sum_j (|D_0 \psi_j|^2 - m_j^2 |\psi_j|^2) + \sum_k (\Phi_k^2 - m_k^2 \Phi_k^2) + L_{\text{int}} \right] \]

\[m_j^2 = \frac{N_{84}}{\alpha'} \quad (N_{84} = 1/2, 1, 3/2 \cdots) \]

\[m_k^2 = \frac{N_{44}}{\alpha'} \quad (N_{44} = 1, 2, \cdots) \quad \alpha' = \frac{27}{4\lambda} \]

In the following we neglect \(L_{\text{int}} \), hoping that its contribution is small.
Quantization

- We work in the $A_0=0$ gauge and impose the Gauss law constraint on the Hilbert space of physical states. [Hashimoto-Matsuo-Morita 2019]

- Gauss law equation (EOM for A_0)

$$q_w + \sum_j q_j = N_c$$

$$q_w \equiv \frac{M_0}{2} \text{tr}(i(w^\dagger w - w^\dagger w)) , \quad q_j \equiv \frac{M_0}{2} i(\psi_j^\dagger \psi_j - \psi_j^\dagger \psi_j)$$

charges associated with the phase rotation of w and Ψ_j

$q_j \sim$ number of open strings in state j.

Gauss law eq. \rightarrow total number of strings is N_c

- We consider the cases with

$$q_w \sim \mathcal{O}(N_c), \quad q_j \sim \mathcal{O}(1)$$
It is convenient to parametrize \(w = (w^I_{\alpha}) \) as

\[
 w = Y_0 1_2 + i\vec{Y} \cdot \vec{\tau} \quad (Y = (Y_0, \vec{Y}) \in \mathbb{C}^4)
\]

\[
 Y = e^{i\theta}(y + i\tilde{y}) \quad \tilde{y} = \tilde{\beta} i\vec{\Sigma} y/\rho, \quad \rho \equiv \sqrt{y^2}
\]

\[
 (y \in \mathbb{R}^4, \tilde{\beta} \in \mathbb{R}^3)
\]

\(\vec{\Sigma} \): the generators of \(SU(2)_I = SU(N_f) \) (for \(N_f=2 \)) embedded in \(SO(4) = SU(2)_J \times SU(2)_I \) acting on \(Y \).

spin isospin

\[
 w \in \mathbb{C}^4 \rightarrow (y, e^{i\theta}, \beta_a) \in (\mathbb{R}^4 \times U(1))/\mathbb{Z}_2 \times \mathbb{R}^3
\]

with the identification \(\mathbb{Z}_2 : (y, e^{i\theta}) \rightarrow (-y, -e^{i\theta}) \)

Then

\[
\begin{align*}
 qw &= -i \frac{\partial}{\partial \theta} \\
 V_{\text{ADHM}}(w) &= 16c\rho^2\beta^2
\end{align*}
\]
Note that the kinetic terms in the Hamiltonian contain

\[
\frac{1}{2M_0} |P_w|^2 = \frac{1}{2M_0 \rho^2} \frac{\partial^2}{\partial \theta^2} + \cdots
\]

\[
= \frac{q_w^2}{2M_0 \rho^2} + \cdots
\]

This term acts as a potential for \(\rho \)

Including this term, the minimum of the potential is

\[
\rho^2 = \frac{\sqrt{6} |q_w|}{2M_0} \equiv \rho_0^2
\]

which is of order \(1/\lambda \).
At the leading order in the $1/N_c$ and $1/\lambda$ expansions, the Hamiltonian becomes

\[
H_0 \simeq \frac{1}{2M_0} P_X^2 + \frac{M_0}{3} (X^z)^2 + \frac{M_0}{3} \rho_0^2
\]
\[- \frac{1}{4M_0} \left[\left(\frac{\partial^2}{\partial(\delta \rho)} \right)^2 + \left(\frac{\partial}{\partial \beta} \right)^2 \right] + M_0 \left(\frac{2}{3} \delta \rho^2 + \omega_\beta^2 \beta^2 \right)
\]

\[
H_m = \sum_j \left(\frac{1}{2M_0} |P_{\psi_j}|^2 + \frac{1}{2} M_0 m_j^2 |\psi_j|^2 \right) + \sum_k \left(P_{\phi_k}^2 + \frac{1}{2} M_0 m_k^2 \phi_k^2 \right)
\]

where \(\delta \rho \equiv \rho - \rho_0 \), \(\omega_\beta^2 \equiv 8c_0^2 \rho_0^2 \)

This is just a collection of harmonic oscillators and we obtain the mass formula:

\[
M \simeq M_0^* + \sqrt{\frac{2}{3}} (n_z + n_\rho) + \omega_\beta \sum_{a=1}^3 n_a^\beta + \sum_j m_j (n_j^\psi + n_j^\overline{\psi}) + \sum_k m_k n_k^\phi
\]

\[n_z, n_\rho, n_\beta^a, n_j^\psi, \overline{n_j^\psi}, n_k^\phi \in \mathbb{Z}_{\geq 1}\]
Comments

- Note that \(\omega_\beta^2 = O(\lambda) \), which is comparable to the mass squared of the massive modes. \(\beta \) becomes heavy because of \(V_{\text{ADHM}}(w) \).

- The neglected interaction term \(L_{\text{int}} \) may contribute to generate mass shifts for the massive modes.

- The first term in the mass formula is

\[
M_0^* = \left(1 + \frac{\rho_0^2}{3} \right) M_0 + \text{(zero point energy)}
\]

We don’t know how to compute the zero point energy.
→ Leave it as an unknown parameter.
4 Interpretation

Regge trajectory

Consider the following states

mass [GeV] \[I = \frac{1}{2} \] Baryons from PDG

Spin parity \[JP \]
Spin J as a function of mass2

People have considered this as an evidence that these states are given by [Sharov 2013, Sonnenschein-Weissman 2014 etc]
See also quark-diquark model: [Santopinto 2004, Gutierrez-Sanctis 2009, Ferretti-Vassallo-Santopinto 2011, Scnctis 2014, etc.]

one of the open string is excited (rotating)
Let’s assume that this is correct and see what we get.

Our mass formula suggests

\[M = M_0^*|_{q_w = N_c - 1} + \frac{1}{\sqrt{2\alpha'}} \sqrt{J - \frac{1}{2}} \quad (J \geq 3/2) \]

which gives

with \(\alpha' \simeq 0.6 \text{ GeV}^{-2} \), \(M_0^* \simeq 0.5 \text{ GeV} \)

cf) For \(\rho \) trajectory: \(\alpha' \simeq 0.88 \text{ GeV}^{-2} \)

Using the value of \(\lambda \) and \(M_{KK} \) to fit \(m_\rho \) & \(f_\pi \): \(\alpha' \simeq 0.45 \text{ GeV}^{-2} \)
Other baryons

- Additional information:
 - kinetic term for \(y \in \mathbb{R}^4 \) contains \(\text{Laplacian for } S^3 \)

\[
- \frac{1}{4M_0} \left(\frac{\partial}{\partial y_A} \right)^2 = - \frac{1}{4M_0} \left(\frac{1}{\rho^3} \partial_\rho (\rho^2 \partial_\rho) + \frac{1}{\rho^2} \Delta_{S^3} \right)
\]

The eigenvalue of \(\Delta_{S^3} \) is \(-\ell(\ell + 2), \ (\ell = 0, 1, 2, \cdots)\)

This is neglected in the previous formula, because it is subleading in \(1/\text{Nc}\). But, we expect larger \(\ell\) gives heavier states

- This part contributes to isospin/spin by \(I = J = \ell/2 \)

- The identification \(\mathbb{Z}_2 : (y, e^{i\theta}) \rightarrow (-y, -e^{i\theta}) \) implies \(\ell \equiv q_w \text{ (mod 2)} \).
\(I = \frac{1}{2} \)

<table>
<thead>
<tr>
<th>level</th>
<th>(\ell)</th>
<th>(q_{\omega})</th>
<th>(J^P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{84} = \frac{1}{2})</td>
<td>0</td>
<td>(N_c - 1)</td>
<td>(3/2^-)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(N_c - 1)</td>
<td>(\frac{5}{2}^- \oplus \left(\frac{3}{2}^- \times 2 \right) \oplus \left(\frac{1}{2}^- \times 2 \right))</td>
</tr>
<tr>
<td>(N_{84} = 1)</td>
<td>0</td>
<td>(N_c - 1)</td>
<td>(\frac{5}{2}^+ \oplus \left(\frac{3}{2}^+ \times 2 \right) \oplus \left(\frac{1}{2}^+ \times 2 \right))</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(N_c - 1)</td>
<td>(\frac{7}{2}^+ \oplus \left(\frac{5}{2}^+ \times 3 \right) \oplus \left(\frac{3}{2}^+ \times 6 \right) \oplus \left(\frac{1}{2}^+ \times 5 \right))</td>
</tr>
<tr>
<td>(N_{44} = 1)</td>
<td>1</td>
<td>(N_c)</td>
<td>(\frac{5}{2}^+ \oplus \left(\frac{3}{2}^+ \times 2 \right) \oplus \left(\frac{1}{2}^+ \times 4 \right) \oplus \frac{3}{2}^- \oplus \left(\frac{1}{2}^- \times 2 \right))</td>
</tr>
</tbody>
</table>

I = 1/2 Baryons from PDG

![Diagram of mass vs. spin-parity for I = 1/2 baryons from PDG]
$l=1/2$

<table>
<thead>
<tr>
<th>level</th>
<th>ℓ</th>
<th>q_{ω}</th>
<th>J^P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{84} = \frac{1}{2}$</td>
<td>0</td>
<td>$N_c - 1$</td>
<td>$\frac{3}{2}^-$</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>$N_c - 1$</td>
<td>$\frac{5}{2}^- \oplus \frac{3}{2}^- \times 2 \oplus \frac{1}{2}^- \times 2$</td>
</tr>
<tr>
<td>$N_{84} = 1$</td>
<td>0</td>
<td>$N_c - 1$</td>
<td>$\frac{5}{2}^+ \oplus \frac{3}{2}^+ \times 2 \oplus \frac{1}{2}^+ \times 2$</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>$N_c - 1$</td>
<td>$\frac{7}{2}^+ \oplus \frac{5}{2}^+ \times 3 \oplus \frac{3}{2}^- \times 6 \oplus \frac{1}{2}^+ \times 5$</td>
</tr>
<tr>
<td>$N_{44} = 1$</td>
<td>1</td>
<td>N_c</td>
<td>$\frac{5}{2}^+ \oplus \frac{3}{2}^- \times 2 \oplus \frac{1}{2}^+ \times 4 \oplus \frac{1}{2}^- \times 2$</td>
</tr>
</tbody>
</table>

Figure

I = 1/2 Baryons from PDG

mass [GeV]

$I=J=1/2$
We studied stringy excited baryons in holographic QCD.

We developed a formalism to include excited modes for the open strings attached on a D4-brane corresponding to a baryon.

A lot of states are obtained.

How can we get more convincing correspondence between predicted states and observed baryons?

- The effect of L_{int}?
- $1/N_c$ and $1/\lambda$ corrections?

Generalization to $N_f = 3$, $\#\text{baryon}>1$ would be interesting.
Thank you!