Polyfold - Fredholm theory

M-polyfold bundles and Fredholm sections

Literature:
- Hofer-Wysocki-Behnke
- Hofer - surveys
- Feliu-Fish-Golovko-Wehrheim: "Polyfolds - A first and second look"
\[\text{Ex}: f: \mathbb{R}^n \to \mathbb{R} \text{ Morse function, let } f = 0 \]

\[\mathcal{M}_{\text{Morse}}(\mathbb{R}^n, \mathbb{R}^n) = \mathcal{E}^{-1}(0) \quad \text{for } M\text{-polyfold Fredholm section } \mathcal{E} \]

\[|\mathcal{E}| = \bigcup_{L > 0} H^1([-L,L], \mathbb{R}^n) \cup H^1((0,\infty), \mathbb{R}^n) \times H^1((0,0], \mathbb{R}^n) \]

\[\text{second countable metric space} \]

M-polyfold charts

- near \(y_0: [-L,L] \to \mathbb{R}^n \)
 \[\mathbb{R} \times H^1([-L,L], \mathbb{R}^n) \ni (\zeta, z) \mapsto \Phi(\zeta, z) \in \mathcal{E} \]
 \[\Phi(\zeta, z) = (\zeta, y_0 + \zeta \cdot z) \]

- near \((y^0, \eta^0) \)
 \[\text{nbhd}(y^0, \eta^0) \subset |\mathcal{E}| \]
 \[\text{retraction (splitting)} \]
 \[\text{homeomorphism} \]
 \[\Phi: (v, \xi, \eta, z) \mapsto (\mathbf{1} + v \beta) \left(\begin{array}{l} 0 \\ (0,0) \\ \eta \end{array} \right) (\xi + \eta) \]

Obj \(\mathcal{E} \) = \bigcup_{i \in \mathcal{E}} U_i \cup \bigcup_{j \in \mathcal{E}} \Omega_j \]

transition maps (\(\cong \) to \footnote{for \((s \times t): \text{Mor } \mathcal{E} \to \text{Obj } \mathcal{E} \)}

\[U_j \supset \Psi_j^{-1}(\mathcal{O}_i(\mathcal{U}_i)) \to U_i \]

\[(v, \xi, \eta, z, \zeta) \mapsto (\mathbf{1} + v \beta) \left(\begin{array}{l} 0 \\ (0,0) \\ \eta \end{array} \right) (\xi + \eta) \]

Note: \(\Psi_j^{\circ} \circ \Psi_j \) has same formula size \(\Psi_j \) projects along \(\mathbb{R} \cdot \beta \)

\[\text{sc}^{-\infty} \]

\[\text{sc}^{\infty} \]

using fixed \(R_j(v) = R_j(\psi) \)

\[\text{sc}^{\infty} \text{ follows as for splitting when using exponential gluing profile } \]

\[R_j(v) = e^{v \cdot e} \]
Example: $f: \mathbb{R}^n \to \mathbb{R}$ Morse function, let $f = 0$

$M_{\text{Morse}}(\mathbb{R}^n, \mathbb{R}^n) = \delta^{-1}(0)$ for M-polyfold Fredholm section δ.

$|X| = \bigcup_{L > 0} H^1([-L, L], \mathbb{R}^n) \cup H^1((0, \infty), \mathbb{R}^n) \times H^1((-\infty, 0), \mathbb{R}^n)$

$\psi: (y, \gamma) \mapsto (y, \gamma f(y))$

$\delta: \gamma \mapsto \gamma f(\gamma) \mapsto \gamma f(\gamma)$

M-polyfold bundle charts

- **near $y_0: [-L, L] \to \mathbb{R}^n$**

 $\mathbb{R} \times H^1([-L, L], \mathbb{R}^n) = U_{\mathbb{R}} \times \Theta \times (\Theta, \Theta f, \Theta f(\gamma_0 + \gamma))$

 $\Theta f(\gamma_0 + \gamma)$

 $H^1([-L, L], \mathbb{R}^n)$

- **near (y_0^0, y_0^1)**

 $[0, v_0] \times H^1((0, \infty), \mathbb{R}^n) \times H^1((-\infty, 0), \mathbb{R}^n)$

 $(\pi_{\mathbb{R}} \times \pi_{\mathbb{R}}), v_0 \in \mathbb{R}$

 $\{v\} \times \text{im} \pi_{R(w)}$

 $\Theta(v_0, v_0)$

 $\Theta_{\text{rel}}(v_0, v_0) = 0$

 $\Theta_{\text{rel}}(3, 3) = 0$

 defined for all $(3, 3) \in \mathbb{E}$

 "filled section"

 $(\pi_{\mathbb{R}} \times \pi_{\mathbb{R}}), v_0 \in \mathbb{R}$

 $\pi_{\mathbb{R}} |_{\mathbb{R}} = \pi_{\mathbb{R}}$

 $[0, v_0] \times \mathbb{E} \times H^0((0, \infty), \mathbb{R}^n) \times H^0((-\infty, 0), \mathbb{R}^n)$

 \mathbb{E}

 $D_{\text{rel}}(3, 3) = (\Theta_{\text{rel}} f)(y_0^0 + \gamma_0, y_0^1 + \gamma_0, (y_0^0 + \gamma_0, y_0^1 + \gamma_0))$

 $D_{\text{rel}}(3, 3) = (\Theta_{\text{rel}} f)(y_0^0 + \gamma_0, y_0^1 + \gamma_0, (y_0^0 + \gamma_0, y_0^1 + \gamma_0))$

 $\Theta_{\text{rel}} (y_0^0 + \gamma_0, y_0^1 + \gamma_0) = 0$
Definition 6.1.4. An \textit{M-polyfold bundle} is an \mathcal{C}^∞ surjection $p : \mathcal{Y} \to \mathcal{X}$ between two M-polyfolds together with a real vector space structure on each fiber $\mathcal{Y}_x := p^{-1}(x) \subset \mathcal{Y}$ over $x \in \mathcal{X}$ such that, for a sufficiently small neighbourhood $U \subset \mathcal{X}$ of any point in \mathcal{X} there exists a \textbf{local sc-trivialization} $\Phi : \mathcal{Y} \supset p^{-1}(U) \to \mathcal{R}$. The latter is an \mathcal{C}^∞ diffeomorphism to an \textit{sc-bundle retract} $\mathcal{R} = \bigcup_{p \in \mathcal{O}} \{p\} \times \mathcal{R}_p \subset \mathcal{E} \times \mathcal{F}$ that covers an M-polyfold chart $\phi : U \to \mathcal{O} \subset \mathcal{E}$ in the sense that $\text{pr}_\mathcal{O} \circ \Phi = \phi \circ p$, and preserves the linear structure in the sense that $\Phi|_{\mathcal{Y}_x} : \mathcal{Y}_x \to \{\phi(x)\} \times \mathcal{R}_\phi(x)$ is an isomorphism in every fiber over $x \in U$.

$$E_{(\nu, \lambda)} = \left\{ \begin{array}{l} H^0([\nu,\lambda], R^e) \\ H^0([0,\nu], R^e) \times H^0([\lambda,\infty], R^e) \end{array} \right\} \cong \text{im} \mathcal{P}_\nu \quad \mathcal{R} = \bigcup_{(\nu, \lambda) \in \mathcal{O}} \{ (\nu, \lambda) \} \times \text{im} \mathcal{P}_\nu$$

Definition 6.1.1. Let $\mathcal{O} \subset [0, \infty)^k \times \mathcal{E}$ be an sc-retract with corners in the sense of Definition 5.3.4, and let \mathcal{F} be an sc-Banach space. Then a \textit{sc-bundle retract} over \mathcal{O} in \mathcal{F} is a family of subspaces $(\mathcal{R}_p \subset \mathcal{F})_{p \in \mathcal{O}}$ that are scale smoothly parametrized by $p \in \mathcal{O}$ in the following sense: There exists a \textit{sc-retraction of bundle type},

\begin{equation}
U \times \mathcal{F} \longrightarrow [0, \infty)^k \times \mathcal{E} \times \mathcal{F}, \quad (v, e, f) \mapsto (r(v, e), \Pi(v, e), f),
\end{equation}

given by a neat sc-retraction $r : U \to [0, \infty)^k \times \mathcal{E}$ with image $r(U) = \mathcal{O}$ and a family of linear projections $\Pi_{(v, e)} : \mathcal{F} \to \mathcal{F}$ that are parametrized by $(v, e) \in U$, and whose images for $p = (v, e) \in \mathcal{O}$ are the given subspaces $\Pi_p(\mathcal{F}) = \mathcal{R}_p$.

\textbf{4}
Definition 6.2.8. An \(sc^\infty \) section \(s : \mathcal{X} \to \mathcal{Y} \) of an \(M \)-polyfold bundle is a \(sc\)-Fredholm section if \(s \) is regularizing in the sense of Definition 6.1.8 and for each \(x \in \mathcal{X}_x \) there is a local \(sc\)-trivialization \(\Phi : p^{-1}(U) \to \mathcal{R} \) in the sense of Definition 6.1.4 over a neighbourhood \(U \subset \mathcal{X} \) of \(x \) with \(\Phi(x, 0) = 0 \), such that \(\Phi \) has a Fredholm filling in the sense of Definition 6.2.7.

\[
[v, \xi] \mapsto (v_I, f(v, \xi))
\]

\[
\begin{array}{c}
[0, \nu_0) \times H^1(0, \nu_0) \to H^1(0, \nu_0) \\
(v, \xi, \nu) \mapsto \begin{cases}
\left[(\mathbb{A}^* + \nu \mathbb{A}) (y^2 + \mathbb{A}) (\mathbb{A}^* + \nu \mathbb{A}) (y^2 + \mathbb{A}) \right] & \nu = 0 \\
\left[\left(\mathbb{A}^* + \nu \mathbb{A} \right) \left(\mathbb{A}^* + \nu \mathbb{A} \right) \Theta_{\nu_0} (y^2 + \mathbb{A}) \right] & \nu = 0
\end{cases}
\end{array}
\]

Definition 6.2.7. Let \(s : \mathcal{O} \to \mathcal{R} \), \(s(p) = (p, f(p)) \) be an \(sc^\infty \) section of an \(M \)-polyfold bundle model \(\pi : \mathcal{R} \to \mathcal{O} \) as in Definition 6.1.1, whose base is an \(sc\)-retract \(\mathcal{O} \subset \{ 0, \infty \}^k \times \mathbb{E} \) containing \(0 \in \{ 0, \infty \}^k \times \mathbb{E} \), and with fibers \(\mathcal{R}_p \subset \mathcal{F} \) for \(p \in \mathcal{O} \). Then a \(\mathcal{F} \) filling at \(0 \) for \(s \) over \(\mathcal{O} \) consists of

- a \(sc \)-retraction of bundle type \(\mathcal{R} : \mathcal{U} \times \mathbb{E} \to \mathcal{U} \times \mathbb{E} \) such that \(\mathcal{U} \subset \{ 0, \infty \}^k \times \mathbb{E} \) is an open subset and \(\mathcal{R}(p, h) = (r(p), \Pi_p h) \) is an \(sc^\infty \) section of the bundle \(\mathcal{O} \times \mathcal{R} \) with \(\mathcal{R}(0, 0) = 0 \) and \(\mathcal{R}(0, 1) = \mathcal{O} \) for all \(p \in \mathcal{O} \),

- an \(sc^\infty \) map \(\tilde{f} : \mathcal{U} \to \mathbb{F} \) that is \(sc \)-Fredholm at \(0 \) in the sense of Definition 6.2.4, with the following properties:

\[
\begin{array}{c}
\tilde{f}|_0 = f; \\
\text{if } p \in \mathcal{U} \text{ such that } \tilde{f}(p) \in \mathcal{R}(p), \text{ then } p = r(p), \text{ that is } p \in \mathcal{O}.
\end{array}
\]

(iii) The linearisation of the map \([0, \infty)^k \times \mathbb{E} \to \mathbb{F} \), \(p \mapsto (\mathbb{I} - \Pi_p) \tilde{f}(p) \) at each \(p \in \mathcal{O} \)

\[
\ker D_p \mathcal{R} = Ker D_{\mathcal{R}(p)} \ni (v, \xi) \mapsto (v, \xi) - (v, \xi) \\
\ker \Pi_p = Ker \Pi_p
\]

\[
\mathbb{R}^k \times \mathbb{E} = T_p \mathcal{O} \oplus T_p \mathcal{O}_p / \mathbb{E}_p = T_p \mathcal{O}_p \\
\mathbb{E}_p = T_p \mathcal{O}_0 \oplus \mathbb{E}_p = T_p \mathcal{O}_0 \oplus \mathbb{E}_p = T_p \mathcal{O}_0 \\
\mathbb{I}_p \ni \mathbb{I}_p \\
\mathbb{I}_p \ni \mathbb{I}_p \\
\mathbb{I}_p \ni \mathbb{I}_p
\]

\[
D_{\mathcal{F}} = D(\mathbb{I}_p) - D((\mathbb{I} - \Pi_p) \mathcal{O}_0) = \Pi_p - D_{\mathcal{F}} + (\mathbb{I} - \Pi_p) \mathcal{O}_0
\]

\[
\begin{cases}
\left(\Pi_{\nu_0} \mathcal{O} \mathbb{I}_p \mathcal{O}_0 | \Pi_{\nu_0} \mathcal{O} \mathbb{I}_p \mathcal{O}_0 \right) : T_p \mathcal{O} \oplus T_p \mathcal{O}_0 \to \mathbb{E}_p \oplus \mathbb{E}_p \\
\mathbb{I}_p \ni \mathbb{I}_p
\end{cases}
\]

Note: \(\mathbb{I}_p \) isomorphism \(\Rightarrow \mathbb{D}_{\mathcal{F}} \) surjective \(\iff \Pi_{\nu_0} \mathcal{D}_{\mathcal{F}} | T_p \mathcal{O}_0 \) surjective
Definition 6.3.1. A scale smooth section \(s : \mathcal{X} \to \mathcal{Y} \) is called \textbf{transverse (to the zero section)} if for every \(x \in s^{-1}(0) \) the linearization \(D_x s : T_x \mathcal{X} \to T_x \mathcal{Y} \) is surjective. Here the linearization \(D_x s \) is represented by the differential \(D_\phi(x)(\Pi \circ f \circ r)|_{T_{\phi(x)} \mathcal{O}} : T_{\phi(x)} \mathcal{O} \to \Pi_{\phi(x)}(\mathbb{F}) \) in any local sc-trivialization \(p^{-1}(U) \supseteq \bigcup_{p \in \mathcal{O}} \Pi_p(\mathbb{F}) \) which covers \(\phi : \mathcal{X} \supset U \to \mathcal{O} = r(\mathcal{U}) \subset \mathbb{E} \) and transforms \(s \) to \(p \to (p, f(p)) \).

(by Note on p. 5)

\[\mathcal{F} : \mathcal{U} \to \mathbb{F} \wedge \mathbb{O} \]

\[\downarrow \text{I.F.Thm. of scale calculus} \]

Theorem 6.3.2 ([HWZ2], Thm. 5.14). Let \(s : \mathcal{X} \to \mathcal{Y} \) be a transverse sc-Fredholm section. Then the solution set \(\mathcal{M} := s^{-1}(0) \) inherits from its ambient space \(\mathcal{X} \) a smooth structure as finite dimensional manifold. Its dimension is given by the Fredholm index of \(s \) and the tangent bundle is given by the kernel of the linearized section, \(T_x \mathcal{M} = \ker D_x s \).

Theorem 6.3.7. ([HWZ2], Theorem 5.22) Let \(\pi : \mathcal{Y} \to \mathcal{X} \) be a strong M-polyfold bundle modeled on sc-Hilbert spaces, and let \(s : \mathcal{X} \to \mathcal{Y} \) be a proper Fredholm section.

(i) For any auxiliary norm \(N : \mathcal{Y}_1 \to [0, \infty) \) and neighbourhood \(s^{-1}(0) \subset \mathcal{U} \subset \mathcal{X} \) controlling compactness, there exists an \(sc^+ \)-section \(\nu : \mathcal{X} \to \mathcal{Y}_1 \) with \(\text{supp} \nu \subset \mathcal{U} \) and \(\sup_{x \in \mathcal{X}} N(\nu(x)) < 1 \), and such that \(s + \nu \) is transverse to the zero section. In particular, \((s + \nu)^{-1}(0) \) carries the structure of a smooth compact manifold.

(ii) Given two transverse perturbations \(\nu_i : \mathcal{X} \to \mathcal{Y}_1 \) for \(i = 0, 1 \) as in (i), controlled by auxiliary norms and neighbourhoods \((N, \mathcal{U}) \) controlling compactness, there exists an \(sc^+ \)-section \(\tilde{\nu} : \mathcal{X} \times [0, 1] \to \mathcal{Y}_1 \) such that \(\{(x, t) \in \mathcal{X} \times [0, 1] \mid s(x) + t \tilde{\nu}(x, t) \} \) is a smooth compact cobordism from \((s + \nu_0)^{-1}(0) \) to \((s + \nu_1)^{-1}(0) \).